May 2003 ECN-RX--03-014

'GREEN' DIESEL PRODUCTION WITH FISCHER-TROPSCH SYNTHESIS

H. Boerrigter

Presented at the Business Meeting Bio-Energy, Platform Bio-Energie $13\ {\rm September}\ 2002$

Revisions						
A						
В						
Made by:						
		Approved/Issued by:				
Н. В	oerrigter	Issued:	ECN Biomass			
Chec	eked by:		Zer Zionas			
		H.J. Veringa				
R. va	an Ree					

'Green' Diesel Production with Fischer-Tropsch Synthesis

Business Meeting Bio-Energy; Platform Bio-Energie 13 September 2002

Dr. ir. Harold Boerrigter ECN Biomass

1 - ECN Biomass

Content

- Definitions
- Why renewable transportation fuels
- Fischer-Tropsch synthesis
- From biomass to 'green' diesel
- Challenges
- Perspectives
- Conclusions

2 - ECN Biomass

Definitions

for renewable fuels

Bio-diesel liquid product from esterfication of vegetable

oils (e.g. rapeseed oil) = RME

Green diesel high-quality ultra-clean diesel-like product from

Fischer-Tropsch synthesis

Biosyngas gas rich in H₂ and CO obtained by gasification

of biomass

Syngas comparable to biosyngas, but from fossil origin

Bio-gas from digestion of organic matter, consisting

mainly of CH₄ and ČO₂

Bio-ethanol from fermentation of organic matter

3 - ECN Biomass

Renewable Fuels

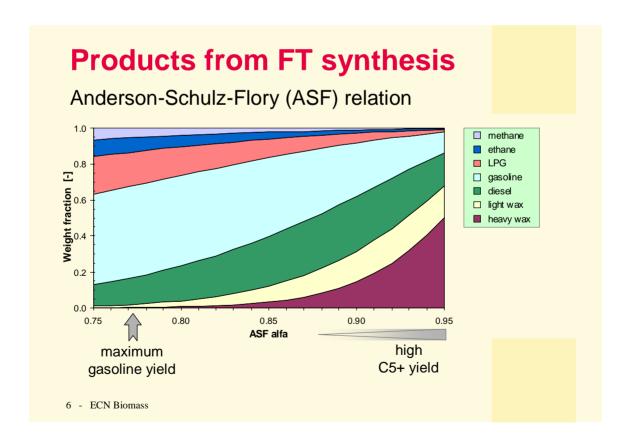
motivation for ECN

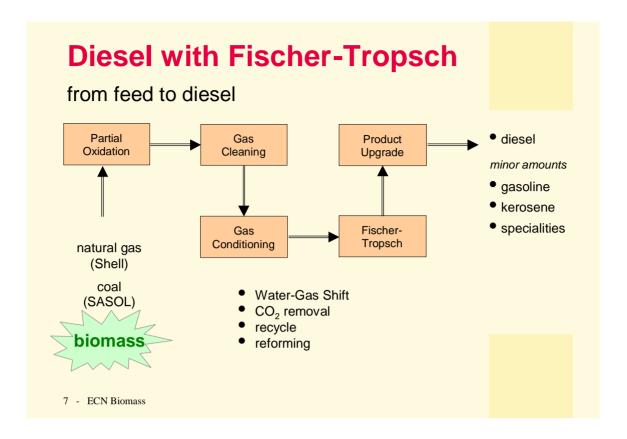
- Biomass-based fuels
 - renewable energy
 - reduction of CO₂ emissions
 - reserves of fossil fuels are not endless
- Directives from European Commission
 - 2% share in 2005 (for bio-fuels)
 - 6% in 2010
 - 8% in 2020

4 - ECN Biomass

Fischer-Tropsch Synthesis

chemistry


- Established in 1923 by German researchers Franz Fischer and Hans Tropsch
- Synthesis of long-chain hydrocarbons from CO en H₂
- Catalysts: iron (Fe) en cobalt (Co)


$$\longrightarrow$$
 Co: CO + 2 H₂ $\dot{\cup}$ -CH₂- + H₂O

WGS:
$$CO + H_2O$$
 Ù $CO_2 + H_2$

Fe:
$$2 \text{ CO} + \text{H}_2 \quad \dot{\text{U}} \quad -\text{CH}_2 - + \text{CO}_2$$

5 - ECN Biomass

Fischer-Tropsch Diesel

a high quality product

- Contains no sulphur: no SO_x emissions
 - to fulfil stronger European regulations
- Contains no aromatics: cleaner combustion
 - lower particulate emissions (-40%)
 - lower NO_x emissions (-20%)
 - application in niche markets (city buses, canal boats)
- Added value compared to fossil diesel
 - blending to product (South -East Asia)

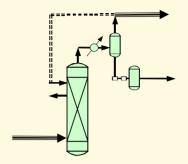
8 - ECN Biomass

Challenges

For FT diesel from Biomass

Demonstrate integrated system of:

- biomass gasification,
- gas cleaning, and
- Fischer-Tropsch synthesis


9 - ECN Biomass

BG-FT-CC Biomass Gasification Gas Cleaning Fischer-Tropsch Synthesis CC TO - ECN Biomass

Fischer-Tropsch synthesis

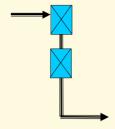
specifications feed gas

Impurity	Removal level	
H ₂ S + COS + CS ₂	< 1 ppmV	
NH ₃ + HCN	< 1 ppmV	
HCI + HBr + HF	< 1 ppmV	
solids (soot, dust, ash)	quantitative	
organic compounds (tars)	below dew point	
- class 2 (hetero atoms)	< 1 ppmV	

- class 2 tars: phenol, pyridine, thiophene
- · organic compounds include also BTX

11 - ECN Biomass

Biomass gasification


raw biosyngas

Design Gas Cleaning

for large-scale systems

Gas		Raw biosyngas	Cracked biosyngas	FT feed gas
CH ₄	[vol%]	6.42	0.01	0.01
C ₂ H ₄	[ppmV]	5936	< 5	< 5
C ₂ H ₆	[ppmV]	7359	< 5	< 5
втх	[ppmV]	1266	< 5	< 5
Tars	[ppmV]	+/- 50%	< 10	< 10
NH ₃	[ppmV]	~	516	0.02
H ₂ S	[ppbV]	~	23789	< 10
cos	[ppbV]	~	47578	278
CS ₂	[ppbV]	~	207	< 10
TOTAL	[vol%]	100.0	100.0	100.0

(Experimental data)

- 1. high-temperature tar cracker
- 2. wet scrubbers
- 3. active carbon en ZnO guard beds

13 - ECN Biomass

Technical Feasibility

demonstration of integrated system

Two tests for 150 h and 500 h:

- 1. gasification of willow
- 2. cleaning of biosyngas to FT specifications
- 3. operating a small FT unit on the cleaned gas

Successful:

- No loss of catalyst activity
- Constant gas consumption and off-gas composition
- FT products similar to fossil equivalents

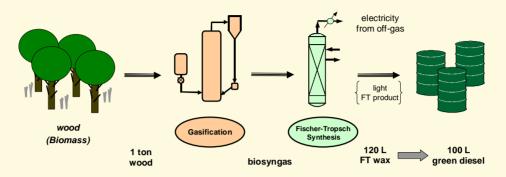
14 - ECN Biomass

"Product in Bottle"

15 - ECN Biomass

Perspectives

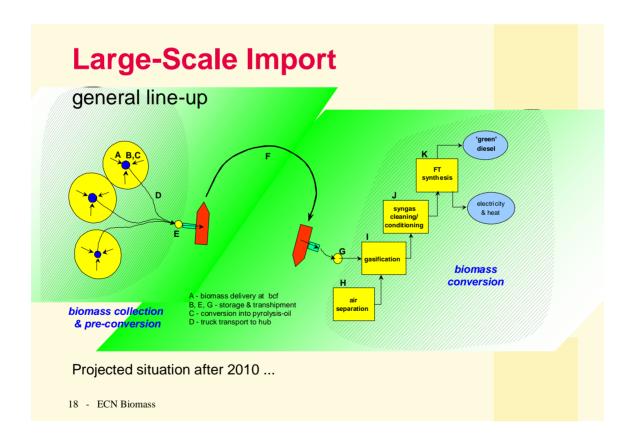
Large-scale production of green diesel is required, for:

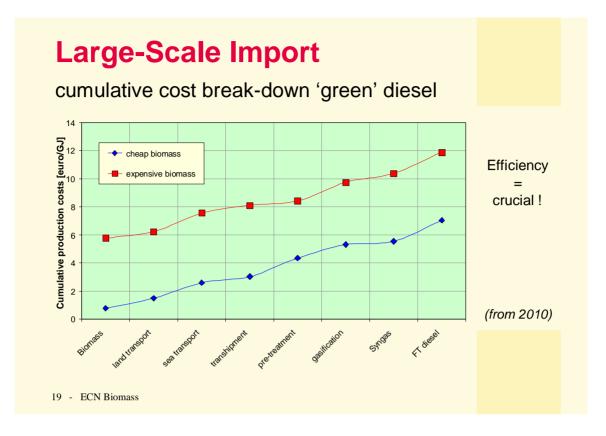

- replacement of significant part of fossil diesel
- reduction of production costs

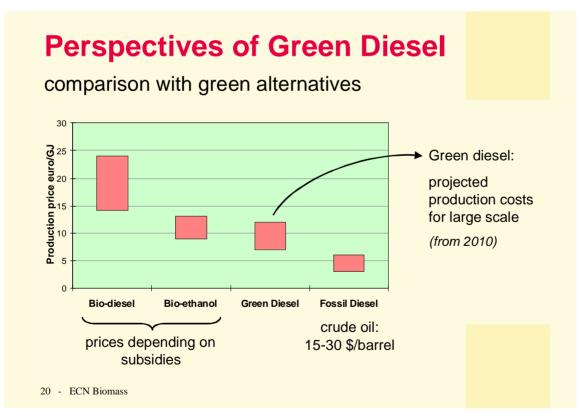
Further technology optimisation is required !!

16 - ECN Biomass

From Tree to Barrel

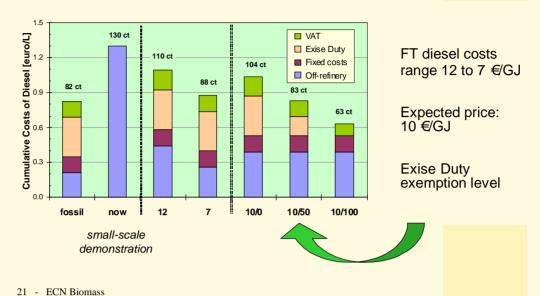

yield of green diesel from wood




10% moisture, no tar cracker, once -through FT, 90% conversion, 80% C5+ yield

Future technology improvements allow increase of yield to: over 210 L green diesel per ton wood

17 - ECN Biomass



Perspectives of Green Diesel

cost break-down price-at-pump

Conclusions

for Green (FT) Diesel

- High quality fuel (sulphur and aromatics free)
- Production from biomass is technical feasible
- Technology optimisation required for cost reduction
- Competitive with other renewable fuels
- With tax incentives also competitive with fossil diesel

(assuming large-scale production and technology optimisation)

22 - ECN Biomass