XII.- DISTRIBUCIÓN DE ENERGÍA SOBRE UN RECEPTOR CILÍNDRICO VERTICAL

XII.1.- DISTRIBUCIÓN DEL FLUJO SOLAR REFLEJADO SOBRE EL RECEPTOR, CORRESPONDIENTE A DIVERSOS VALORES DE $\beta_{\rm tp}$

En el capítulo anterior se ha estudiado la contribución energética sobre el receptor, considerando un anillo individual de heliostatos definido por el valor medio de su t, un grupo de anillos de anchura t, y el campo especular total entre, 0° y 70°, y entre, 30° y 70°.

Sin embargo, la simetría puntual que impone el campo circular la podemos modificar sustituyéndola por otra respecto a un eje cualquiera, que por comodidad haremos coincidir con la dirección Norte-Sur, y así poder estudiar campos continuos formados por fracciones de anillos concéntricos, limitados para diversos valores del ángulo tp ó por intervalos de anchura tp.

Este estudio puede ampliarse también al caso de suponer porciones de espejos que en un momento determinado pueden permanecer inactivos debido a diversas causas, como por ejemplo, a la nubosidad parcial de una parte del campo concentrador o al mal enfoque de un grupo de heliostatos sobre el punto focal F del receptor, o averías localizadas, etc, de forma que estos espejos se puedan compendiar dentro de un intervalo angular tp, a partir de un valor de tp perfectamente determinado.

Al haber definido el ángulo, $_{tp}=_{t}-_{p}$, como un ángulo relativo acimutal, se podrán obtener unas curvas que muestren las contribuciones energéticas producidas sobre un punto P en el plano imagen del receptor, que sabemos viene definido por el ángulo __p, pare diversas cuñas de anillos comprendidas dentro del intervalo definido por los ángulos, ± __tp. Para su resolución partiremos de variables, lo cual supone que el receptor cilíndrico vertical debe ser de dimensiones fijas; si se interpreta que $\frac{\hat{r}}{}$ es constante, el receptor modificaría sus dimensiones continuamente, adaptándolas a los valores que le imponga el factor de dispersión angular , cosa imposible a todos los efectos.

Considerando $\frac{\hat{r}}{-}$ variable se han obtenido las gráficas representadas en las Fig XII.1, para diversos valores del ángulo tp que pueden interpretarse, si se considera p = 0°, como campos parciales circulares continuos con forma de cuña, y con simetría respecto al eje definido por la dirección Norte-Sur, en los que todos los anillos enfocan al mismo punto F del receptor que viene definido por $\frac{\hat{h}}{-}$ respecto al punto P dado por, p = 0.

Fig XII.1 -Contribución por anillos y distribución de energía sobre el receptor con cuñas de anillos especulares, para tp= 10°, 20°, 30°, 40° y 50°, r= 7 m; h= 17 m; H= 175 m; <r>/ variable

Se han representado las curvas correspondientes a, $_{tp}=\pm 10^{\circ}, \pm 20^{\circ}, \pm 30^{\circ}, \pm 40^{\circ}y \pm 50^{\circ}$ Fig XII.2, junto con el máximo de $_{tp}$ dado por la Fig XII.7.

Asimismo se ha hecho la representación de la contribución energética sobre el receptor de grupos de anillos comprendidos en intervalos $_{t} = 5^{\circ}$, para el campo continuo definido entre los limites $_{tm} = 30^{\circ}$ y $_{tM} = 70^{\circ}$.

Para valores de, $t_p = \pm 10^{\circ}$ aparece un tramo uniforme, según el cual, para el intervalo sobre el receptor dado por, 1 $\frac{\hat{h}}{-}$ 3,5, la densidad energética es constante; a medida que aumenta el valor de t_p , el intervalo entre los valores $\hat{h}_{u,v}$ va disminuyendo, al tiempo que aumenta el de C² llegándose así a que para, $t_p(máximo) = 61,72^{\circ}$, se obtiene un máximo de C tal que C² = 8.350, para, $\frac{\hat{h}}{-} = 1,6$, como se ha representado en la Fig XII.2.

Si consideramos los intervalos $_{tp}$ comprendidos entre dos valores de $\pm _{tp}$, se obtendrán las gráficas de la Fig XII.3; para ello se procederá restando las curvas de las Fig XII.1 entre sí, de forma que lo que se obtiene es la contribución correspondiente a un intervalo $_{tp}$ dado, para un valor medio de $_{tp}$ definido por,

$$tp = \frac{tp2 - tp1}{2}$$

en donde se han considerado intervalos, $_{tp}$ = ± 10°, para diversos valores medios de $_{tp}$; en todas

las representaciones se ha considerado que vienen referidas al punto P del plano imagen sobre el receptor, definido como sabemos por, $_{p}=0^{\circ}$.

Las gráficas se corresponden con los valores expuestos en la Tabla XII.I.

Fig XII.2.- Relaciones de concentración sobre el receptor con campo continuo de heliostatos comprendido entre 30°< $_{t}$ <70 $\,$

Tabla XII.I								
Número	tp1	tp2	tp(medio)	tp				
1	0°	±10°	5°	10°				
2	±10°	±20°	15°	10°				
3	±20°	±30°	25°	10°				
4	±30°	±40°	35°	10°				
5	±40°	±50°	45°	10°				
6	$\pm 50^{\circ}$	±61,72°	55,86°	11,72°				

La contribución de cada anillo, o grupos de anillos dentro del intervalo t_p disminuye a medida que aumenta el valor de t_p , llegándose a la conclusión de que el grupo de anillos correspondiente a los valores de $t_p(máximo)$ representados por la gráfica n°6, no contribuye en forma apreciable, desde el punto de vista energético, respecto a la posición sobre el receptor definida por el punto P, en el que, p = 0.

Las Fig XII.4 están construidas para, $\frac{\hat{r}}{2} = 3$, y en ellas no aparece ningún tramo de densidad

energética uniforme, como sucedía para $\frac{\hat{r}}{}$ variable, sino que tienen forma de pico, por lo que en esas zonas sobre el receptor existirán densidades energéticas muy elevadas, con el consiguiente peligro de que desde un punto de vista térmico no puedan ser soportadas por el mismo, dadas las limitaciones metalúrgicas del receptor.

Fig XII.3.- Relaciones de concentración sobre un receptor cilíndrico vertical para diversas cuñas de espejos de anchura tp=10°

El valor de C 2 máximo es inferior al correspondiente a $\frac{\hat{r}}{-}$ variable, haciéndose más amplio

el tramo correspondiente a los valores de ^h/₋ sobre el receptor, lo que supone una mayor altura del mismo, siempre que se mantenga constante la anchura de los anillos.

Una solución que permita valores de $\frac{\hat{r}}{-}$ constantes se podrá llevar a la práctica siempre que la

anchura de los anillos vaya disminuyendo a medida que se alejan de la torre, de forma que los espejos más alejados, como deben seguir siendo de sección reflectante cuadrada, tengan dimensiones menores que los más próximos a la torre.

De mantenerse constantes las dimensiones de los espejos, supondría que la única solución posible compatible con el mantenimiento de $\frac{\hat{r}}{-}$ constante sería la de modificar las dimensiones del re-

receptor adaptándolas a las condiciones impuestas por los diferentes anillos, cuestión que técnicamente es imposible. El haber adoptado para valores de $\frac{\hat{r}}{}$ diversos tipos ha radicado precisamente en el concepto de geometrías del campo especular compatibles con la realidad y que pudieran ser posibles prácticamente; su diferencia radica en que las dimensiones del receptor serían distintas, por cuanto para $\frac{\hat{r}}{}$ variable, su altura vendría fijada por los espejos interiores, y su diámetro por los exteriores,

Fig XII.4.- Relaciones de concentración sobre el receptor con campo continuo de heliostatos con r/ = 3

1) 7,5°-10°; 2) 10°-15°; 3) 15°-20°; 4) 40°-50°; 5) 50°-60,58°

correspondientes a distintos valores medios de tp y diversos intervalos de anillos especulares

mientras que para $\frac{\hat{r}}{-}$ fijo, si las dimensiones de los espejos interiores son las mismas que las del caso de $\frac{\hat{r}}{-}$ variable, la altura del receptor será también la misma, aunque su diámetro será menor por ser también menor el valor de D correspondiente a la elipse solar imagen sobre el plano tangente al receptor, correspondiente a los espejos situados en los anillos más exteriores.

En las Fig XII.5 se han representado las contribuciones energéticas sobre el receptor, correspondientes a diversos valores medios de $_{tp}$, e intervalos de anillos diversos, como en la Fig XII.3, observándose que contra más pequeño sea $_{tp}$, mayores serán los valores de $\frac{\hat{h}}{-}$ dependiendo los correspondientes a C $_{2}$ del valor del intervalo considerado.

XII.2.- DISTRIBUCIÓN DEL FLUJO SOLAR SOBRE EL RECEPTOR, CUANDO SE MODIFICA EL PUNTO DE ENFOQUE PARA DIVERSOS GRUPOS DE ANILLOS

Cuando todos los anillos focalizan en el mismo punto sobre el eje del receptor, hemos comprobado que en la distribución de energía sobre el mismo aparece un pico, que no es aconsejable mantener por consideraciones de tipo técnico; en consecuencia se impone la necesidad de obtener una distribución energética más homogénea que haga posible el que sobre la superficie exterior del receptor se obtenga una temperatura más o menos uniforme, y que en un instante determinado se pueda considerar como constante.

Esto se puede lograr haciendo que los anillos o diversos grupos de anillos estén enfocados a puntos distintos del F sobre el eje del receptor, Fig XII.6; la formulación anteriormente obtenida seguirá siendo válida por cuanto, cuando un grupo de anillos enfoque a un punto cualquiera distinto del F sobre el eje del receptor, el desplazamiento vertical de dicho punto respecto al F será, como mucho, de unos pocos metros, longitud que comparada con la distancia existente entre el receptor y los diversos grupos de anillos será prácticamente despreciable, por lo que la contribución original del flujo solar sobre el receptor mantendrá, para cada anillo o grupos de anillos, no solo su forma, sino también la magnitud y la simetría acimutal, aunque trasladadas verticalmente una distancia igual a la que existe entre el nuevo punto focal correspondiente al grupo de anillos considerado, y el foco primitivo F.

Este mantenimiento de la forma de la contribución de la distribución de flujo, es una aproximación que podemos considerar como válida, aunque ciertamente no es la real, pero que nos permitirá reformar la distribución del flujo total sobre la superficie del receptor, acorde con las necesidades energéticas impuestas por el fluido que vaya a circular por el receptor, que a partir de ese momento se convertirá en un intercambiador de calor; lo ideal sería mantener una temperatura uniforme siempre que el fluido no vaporice; y para cuando circule un fluido condensable, obtener otro tipo de distribución energética sobre el receptor que tienda a acoplarse a las necesidades técnicas del fluido, sobre todo en la etapa de vaporización. Esta modificación del punto focal F se puede aplicar también a casos de emergencia, como el que un cierto número de espejos permanezcan inactivos o desenfocados, por avería, limpieza, nubosidad parcial sobre el concentrador, etc, de forma que los espejos que permanezcan activos se podrían enfocar a otros puntos sobre el eje del receptor, que tiendan a paliar y compensar en lo posible el fallo o avería correspondiente.

Fig XII.6.- Distribución de energía sobre el receptor para puntos focales distintos del punto F

Fig XII.7.- Distribución de energía sobre el receptor para puntos focales distintos del punto F

En la Fig XII.6 se ha representado un caso de modificación del punto focal F, de forma que los diversos grupos de anillos estudiados según la Fig XII.7a están desenfocados; como se ha dicho anteriormente, la forme de la distribución energética sobre el receptor se mantendrá, pero no en el mismo lugar. Los puntos de enfoque sobre el eje del receptor, para los diversos grupos de anillos numerados del 1 al 8 vienen dados en la Tabla XII.2.

La máxima relación de concentración de energía solar reflejada, distribuida uniformemente sobre el receptor, se obtiene, en estas condiciones, entre,

-1 $\frac{\hat{h}_{u,v}}{2}$ 3; C ² 4.800

En la Fig XII.6a hemos representado a trazos el pico de la concentración para el caso de enfoque de los espejos a un único punto F, y se observa que su máximo se corresponde aproximadamente con C 2

8.400, apreciándose una notable reducción del mismo.

XII.-237

Tabla XII.2										
Curva	1	2	3	4	5	6	7	8		
< t>	67,5	62,5	57,5	52,5	47,5	42,5	37,5	32,5		
<r>/</r>	2,97	2,74	2,55	2,39	2,26	2,16	2,07	1,99		
Punto focal (h_{uv} /)	-0,5	2	-1,5	-2	2	1,5	1	-3		

En la Fig XII.7 hemos hecho otra representación, similar a la anterior, en la que el intervalo de distribución energética uniforme aparece más amplio, entre,

$$-1$$
 $\frac{\hat{h}_{u,v}}{4,5}$; C ² 4.200

por lo que disminuye el valor de, C ² 4.200; en este caso, por la parte inferior del receptor se perderá energía, es decir, no podrá ser aprovechada literalmente, pero sí se podrá utilizar en el precalentamiento del fluido motor. Los puntos de enfoque vienen dados en la Tabla XII.3.

Tabla XII.3								
Curva	1	2	3	4	5	6	7	8
Punto focal (h _{uv} /)	2	-1,5	-1,75	2,25	-3	1,5	1	-4

La importancia de este tipo de concentración con puntos de enfoque múltiples, radica en que el fluido que se vaporiza necesita, para tramos iguales de altura del receptor, contribuciones energéticas distintas, motivadas no sólo por sus características físicas, sino también por las condiciones iniciales y finales, a la entrada y salida del receptor, que a su vez podrán modificarse para obtener un determinado punto de funcionamiento, por lo que habrá que adecuar convenientemente las curvas de distribución energética sobre el receptor, a las necesidades impuestas por el fluido.

El número total de anillos concéntricos para el campo continuo de heliostatos, de anchura de anillo igual a l = 5 m sería de 77.

El número total de espejos para este concentrador sería de 27.258

El número total de anillos concéntricos para el campo continuo de heliostatos, de anchura de anillo igual a l = 10 m sería de 39.

El número total de espejos para este concentrador sería de 6.903

La superficie total del campo especular, para éste caso particular sería de, 706.730 m².

Anillo	R medio	Ángulo	N° espejos		Distancia	Anillo	R medio	Ángulo	N° espejos		Distancia
n°	anillo	acimutal	1	1	espejos	n°	anillo	acimutal	1	1	espejos
	metros	$t \ge 10^3$	5 m	10 m	m		metros	_t x 10 ³	5 m	10 m	m
1	101	30000	126	63	5,036	18′	276			336	5,161
1′	106			132	5,045	19	281	50086	342	171	5,163
2	111	32386	138	69	5,053	19′	286			348	5,164
2	116			144	5,061	20	291	58978	354	177	5,165
3	121	34661	150	75	5,068	201	296			360	5,166
3'	126			156	5,075	21	301	59826	366	183	5,167
4	131	36817	162	81	5,080	21'	306			372	5,168
4′	136			168	5,086	22	311	60633	378	189	5,169
5	141	38858	174	87	5,091	22	316			384	5,171
5′	146			180	5,096	23	321	61402	390	195	5,172
6	151	40789	186	93	5,100	23'	326			396	5,173
6′	156			192	5,105	24	331	62135	402	201	5,173
7	161	42614	198	99	5,109	24'	336			408	5,174
7′	166			204	5,112	25	341	62833	414	207	5,175
8	171	44337	210	105	5,116	25'	346			420	5,176
8′	176			216	5,119	26	351	63500	426	213	5,177
9	181	45965	222	111	5,122	26'	356			432	5,178
9'	186			228	5,125	27	361	64137	438	219	5,179
10	191	47503	234	117	5,128	27	366			444	5,179
10'	196			240	5,131	28	371	64747	450	225	5,180
11	201	48955	246	123	5,133	28'	376			456	5,181
11'	206			252	5,136	29	381	65330	462	231	5,182
12	211	50328	258	129	5,138	29'	386			468	5,183
12′	216			264	5,140	30	391	65888	474	237	5,184
13	221	51626	270	135	5,143	30'	396			480	5,184
13′	226			276	5,145	31	401	66423	486	243	5,184
14	231	52813	282	141	5,147	31′	406			492	5,185
14'	236			288	5,148	32	411	66936	498	249	5,186
15	241	54015	294	147	5,150	32'	416			504	5,186
15′	246			300	5,152	33	421	67428	510	255	5,187
16	251	55115	306	153	5,154	331	426			516	5,187
16'	256			312	5,155	34	431	67901	522	261	5,188
17	261	56158	318	159	5,157	34'	436			528	5,189
17′	266			324	5,158	35	441	68355	534	267	5,189
18	271	57147	330	165	5,160	35'	446			540	5,190

CONCENTRADOR CONTINUO DE ESPEJOS